数学教学设计15篇
作为一名无私奉献的老师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?以下是小编收集整理的数学教学设计,希望能够帮助到大家。
数学教学设计1活动内容
旅游中出发、租房、游览、吃饭的数学。
活动目标
沟通数学与生活的密切联系,帮助学生更好地理解数学,体会数学的价值,提高学习数学的兴趣,增强学习数学的信心。
教具准备
几张火车票,实物投影等。
活动过程
一、谈话导入
教师:在节假日,家长都带你外出旅游吗?你去过哪些旅游景点,看什么好玩的,给同学介绍一下,让我们一同分享快乐。
引入课题:生活中处处有数学,处处需要用数学。你们在旅游中遇到数学问题吗?
揭示课题:今天,我们就一起来学习旅游中的数学(板书)。
二、组织活动
1、打开课文,看一看课文中列举了哪些旅游中的数学问题。
学生回答,出发的时间计算,租房的人员安排,租车的方案,还有吃饭的费用计算等等。
2、解决问题。
(1)审题,明确课文情境中的问题。
(2)独立思考,探索策略,独立解决问题。
(3)小组交流,每一个学生都在小组中说一说自己的想法和结果,让他们经历解决问题的全程。
(4)全班交流。
明确几个问题:
1)从21:30到第二天7:00经过了几时?
策略:先计算21:30到第二天6:30经过了几时?(经过了9时)再加上半个小时(6:30-7:00)。
一共需要9时30分。注意:千万不要写成经过了9:30。
2)“怎么租房最合算?”
如果所租的房子都住满人,没有空位,就是最合算的方案。
4人间数
3人间数
可住人数
钱数/元
方案一
4
16
80×4=320
方案二
3
1
15
80×3+66=306
方案三
2
2
14
80×2+66×2=292
方案四
1
3
13
80+66×3=278
方案五
5
15
66×5=330
3)“怎样租车最省钱?”
租车的问题与“租房”问题类似。即最省钱的方案是:如果所租的车座位不可能刚好坐满,空位子也必须越少越好。
18坐车数
16坐车数
可坐人数
空位数
钱数/元
方案一
4
72
14
16×4=640
方案二
3
1
66
8
160×3+120=600
方案三
2
2
60
2
160×2+120×2=560
方案四
1
4
66
8
160+120×4=640
方案五
5
60
2
120×5=600
3、小结。
(1)让学生说一说,这节课学会了什么,有什么感受。
(2)教师补充强调:1)生活中处处有数学,处处需要数学。
2)旅游中除了学会计算,节省费用,还要注意安全、卫生、健康、文明等等。
三、设计旅游计划
课文第40页的“实践活动:设计旅游计划。”
1、认真审视课文要求。
2、讨论确定旅游景点。
3、学生设计旅游计划。
可以让学生进行小组合作。让每一位学生在小组中发挥自己的特长,各尽其职。
要留下充足的实践让学生去完成,不要急于进行全班性的评价,对课内还不能完成的可以延缓评价,鼓励他们课后去社会调查,(查资料、找书籍、上网等),获取一手资料,然后设计出最佳方案。老师安排机会进行“旅游计划”展示、比赛。
数学教学设计2函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标:
1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.
一、问题情景
1.观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数 ……此处隐藏22117个字……0练习2. 判定哪些式子是二元一次方程方程.
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.
并提出注意二元一次方程解的书写方法.
试一试:
检验下列各组数是不是方程2x=y+1的解:
①??x?4,
?y?3,②??x?2.5,
?y?4,③??x??6,
?y??13.
②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程 x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;
(3) 已知 ??x?2,
?y?1是关于x,y的方程2x+ay=5的一个解,则a= .
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
7.布置作业:(1)教材P82; (2)作业本.
教学设计意图:
依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.
在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学
内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.
数学教学设计15教学目的
1.使学生在具体的情境中感知口算在实际中的作用,培养学生的数学应用意识。
2.通过观察、比较,发现并掌握一个因数是整百数的乘法口算,并能够正确地进行计算。
教学过程
一、创设情境,引发情感
二、探究新知
把整百数看成几个百,和另一个因数相乘,得多少个百,在得数后面添上两个0。
三、尝试练习
整百数的乘法口算和整十数的乘法口算有什么异同点?
四、分层练习
练习十一的第1-3题。
五、作业:
练习十一的第4、5题。
课题二用两位数乘的乘法估算
教学目的
1.让学生体会估算在日常生活中的意义和作用。
2.掌握两、三位数乘两闰数的乘法估算。
3.能利用估算解决实际问题。
教学过程
一、复习引入
谁能说说上节课我们学
习了哪些知识?
口算:28×8
89×9
312×7
498×6
22×9
说一说口算的简便方法。
二、探究新知
把本题的估算和前面的一位数乘法的估算作比较,它们有什么异同点?
三、尝试练习:完成第46页做一做。
四、分层练习
1.估算下面各题
79×5602×4
87×9
188×2
2.写出下面估算结果。
12×4232×5184×6293×53
五、作业:练习十二第1-3题。
课题三除法口算
教学目的
1.使学生理解并掌握除数是整百数的除法口算,能正确地进行计算。
2.培养学生的口算意识和习惯。
教学过程
一、复习引入
1.口算下面各题,看谁算得快。
200÷50
280÷70
3600÷90
450÷50
2.仔细观察下面两个算式与上面的题相比较有什么不同?
500÷100
2400÷100
二、探究新知
1.探究500÷100怎样口算?
2.教学例5。
3.归纳:怎样口算除数是整百数的除法?哪种方法最方便?
三、分层练习
1.仔细观察下面左边的算式可以看成右边的哪个算式?用线连起来。
800÷100
6÷2
600÷200
15÷3
2800÷70030÷6
1500÷3008÷1
3000÷60028÷7
2.做练习十三的第1、2题。
四、作业:练习十三的第3-5题。